ELECTRORHEOLOGICAL PROPERTIES OF BIODEGREDABLE CHITOSAN/EXPANDED PERLITE COMPOSITES
Author(s) -
Mehmet Çabuk
Publication year - 2016
Publication title -
journal of the turkish chemical society section a chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 6
ISSN - 2149-0120
DOI - 10.18596/jotcsa.26894
Subject(s) - electrorheological fluid , materials science , composite material , perlite , chitosan , viscoelasticity , composite number , silicone oil , shear thinning , electric field , rheology , chemical engineering , engineering , physics , quantum mechanics
In this study, chitosan (CS)/expanded perlite (EP) composites with different chitosan fractions (10%, 20% and 50%) were prepared by absorbing chitosan into porous networks of expanded perlite, as a new hybrid smart electrorheological (ER) material. Structural and morphological characterizations of the composites were carried out by FTIR and SEM-EDS techniques. Also, apparent density, particle size, and conductivity of the CS/EP composites were determined. Finally, the effects of electric field strength ( E ), shear rate, shear stress, and temperature onto ER behavior of the CS/EP/silicone oil system were investigated. The CS/EP/SO ER fluid system showed reversible electrorheological activity when subjected to external electric field strength by showing shear thinning non-Newtonian viscoelastic behavior. The yield stress value reached to 1250 Pa under E = 3 kV/mm for CS/EP3 composite.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom