Optimisation and Validation of a High Throughput Screening Compatible Assay to Identify Inhibitors of the Plasma Membrane Calcium ATPase Pump - a Novel Therapeutic Target for Contraception and Malaria
Author(s) -
Tamer Mohamed,
Simon Arian Zakeri,
Florence Baudoin,
Markus Wolf,
Delvac Oceandy,
Elizabeth J. Cartwright,
Sheraz Gul,
Ludwig Neyses
Publication year - 2013
Publication title -
journal of pharmacy and pharmaceutical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.497
H-Index - 78
ISSN - 1482-1826
DOI - 10.18433/j3pg68
Subject(s) - high throughput screening , malaria , atpase , throughput , calcium , pharmacology , chromatography , chemistry , computational biology , virology , medicine , biology , computer science , biochemistry , enzyme , immunology , telecommunications , wireless
ATPases, which constitute a major category of ion transporters in the human body, have a variety of significant biological and pathological roles. However, the lack of high throughput assays for ATPases has significantly limited drug discovery in this area. We have recently found that the genetic deletion of the ATP dependent calcium pump PMCA4 (plasma membrane calcium/calmodulin dependent ATPase, isoform 4) results in infertility in male mice due to a selective defect in sperm motility. In addition, recent discoveries in humans have indicated that a single nucleotide polymorphism (SNP) in the PMCA4 gene determines the susceptibility towards malaria plasmodium infection. Therefore, there is an urgent need to develop specific PMCA4 inhibitors. In the current study, we aim to optimise and validate a high throughput screening compatible assay using recombinantly expressed PMCA4 and the HTRF® Transcreener® ADP (TR-FRET) assay to screen a drug library.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom