z-logo
open-access-imgOpen Access
First insight into microbial community composition in a phosphogypsum waste heap soil
Author(s) -
Sylwia Zielińska,
Piotr Radkowski,
Tadeusz Ossowski,
Agnieszka H. LudwigSłomczyńska,
Joanna M. Łoś,
Marcin Łoś
Publication year - 2017
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2017_2297
Subject(s) - acidobacteria , actinobacteria , phosphogypsum , proteobacteria , microbial population biology , heap (data structure) , environmental science , biology , ecology , mathematics , 16s ribosomal rna , raw material , genetics , algorithm , bacteria
The aim of this study was to investigate the soil microbial communities of a phosphogypsum waste heap. The soil microbial community structures can differ over time, as they are affected by the changing environmental conditions caused by a long-term exposure to different kinds of pollutions, like is the case of soil in the post-production waste area in Wiślinka (in the northern part of Poland) currently undergoing restoration. Our analyses indicated that the most abundant phyla were Proteobacteria, Acidobacteria, and Actinobacteria, and generally such an abundance is common for most of the studied soils. The most dominant class were Alphaproteobacteria, with their participation in 33.46% of the total reads. Among this class, the most numbered order was Sphingomonadales, whereas among this order the Sphingomonadaceae family was the most abundant one. The Sphingomonadaceae family is currently in the center of interest of many researchers, due to the ability of some of its members to utilize a wide range of naturally occurring organic compounds and many types of environmental contaminants. This kind of knowledge about microbial populations can support efforts in bioremediation and can improve monitoring changes in the contaminated environments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom