High-grade mutant OmpF induces decreased bacterial survival rate.
Author(s) -
Zhiping Zhao,
Tingting Liu,
Li Zhang,
Min Luo,
Xin Nie,
Zaixin Li,
Yu Pan
Publication year - 2014
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2014_1908
Subject(s) - mutant , antibiotics , biology , microbiology and biotechnology , bacteria , function (biology) , mutation , sequence (biology) , peptide sequence , genetics , gene
OmpF plays very important roles in the influx of antibiotics and bacterial survival in the presence of antibiotics. However, high-grade mutant OmpF and its function in decreasing bacterial survival rate have not been reported to date. In the present study, we cloned a high-grade mutant OmpF (mOmpF) and sequence analysis suggested that over 45 percent of the DNA sequence was significantly mutated, leading to dramatic changes in over 55 percent of the amino acid sequence. mOmpF protein was successfully expressed. When grown in the presence of antibiotic, the bacterial survival rate decreased and the antibiotic inhibition zone became larger with the increase of the mOmpF. It was concluded that concentration of high-grade mutant mOmpF dramatically influenced the bacterial survival rate. The study presented here may provide insights into better understanding of the relationships between structure and function of OmpF.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom