z-logo
open-access-imgOpen Access
Mutator specificity of Escherichia coli alkB117 allele.
Author(s) -
Jadwiga Nieminuszczy,
Celina Janion,
Elżbieta Grzesiuk
Publication year - 2006
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2006_3358
Subject(s) - alkb , frameshift mutation , escherichia coli , genetics , biology , mutation , microbiology and biotechnology , gene , mutant , dna , base pair
The Escherichia coli AlkB protein encoded by alkB gene was recently found to repair cytotoxic DNA lesions 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) by using a novel iron-catalysed oxidative demethylation mechanism that protects the cell from the toxic effects of methylating agents. Mutation in alkB results in increased sensitivity to MMS and elevated level of MMS-induced mutations. The aim of this study was to analyse the mutational specificity of alkB117 in a system developed by J.H. Miller involving two sets of E. coli lacZ mutants, CC101-106 allowing the identification of base pair substitutions, and CC107-CC111 indicating frameshift mutations. Of the six possible base substitutions, the presence of alkB117 allele led to an increased level of GC-->AT transitions and GC-->TA and AT-->TA transversions. After MMS treatment the level of GC-->AT transitions increased the most, 22-fold. Among frameshift mutations, the most numerous were -2CG, -1G, and -1A deletions and +1G insertion. MMS treatment appreciably increased all of the above types of frameshifts, with additional appearance of the +1A insertion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom