Interaction of class A G protein-coupled receptors with G proteins.
Author(s) -
Rafał Ślusarz,
Jerzy Ciarkowski
Publication year - 2004
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2004_3604
Subject(s) - transducin , rhodopsin , g protein , g protein coupled receptor , protein subunit , peptide , helix (gastropod) , alpha helix , receptor , chemistry , dimer , g alpha subunit , protein structure , protein–protein interaction , gtp binding protein regulators , stereochemistry , biology , biochemistry , gene , retinal , ecology , snail , organic chemistry
A model for interaction of class A G protein-coupled receptor with the G protein G(alpha) subunit is proposed using the rhodopsin-transducin (RD/Gt) prototype. The model combines the resolved interactions/distances, essential in the active RD*/Gt system, with the structure of Gt(alpha) C-terminal peptide bound to RD* while stabilizing it. Assuming the interactions involve conserved parts of the partners, the model specifies the conserved Helix 2 non-polar X- - -X, Helix 3 DRY and Helix 7/8 NP- -Y- - F RD* motifs interacting with the Gt(alpha) C-terminal peptide, in compliance with the structure of the latter. A concomitant role of Gt(alpha) and Gt(gamma) C-termini in stabilizing RD* could possibly be resolved assuming a receptor dimer as requisite for G protein activation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom