z-logo
open-access-imgOpen Access
Targeting BACE with small inhibitory nucleic acids - a future for Alzheimer's disease therapy?
Author(s) -
Barbara Nawrot
Publication year - 2004
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2004_3582
Subject(s) - nucleic acid , amyloid precursor protein , chemistry , oligonucleotide , biochemistry , small interfering rna , amyloid precursor protein secretase , amyloid beta , amyloid (mycology) , ribozyme , peptidomimetic , rna , alzheimer's disease , gene , peptide , medicine , disease , inorganic chemistry , pathology
beta-Secretase, a beta-site amyloid precursor protein (APP) cleaving enzyme (BACE), participates in the secretion of beta-amyloid peptides (Abeta), the major components of the toxic amyloid plaques found in the brains of patients with Alzheimer's disease (AD). According to the amyloid hypothesis, accumulation of Abeta is the primary influence driving AD pathogenesis. Lowering of Abeta secretion can be achieved by decreasing BACE activity rather than by down-regulation of the APP substrate protein. Therefore, beta-secretase is a primary target for anti-amyloid therapeutic drug design. Several approaches have been undertaken to find an effective inhibitor of human beta-secretase activity, mostly in the field of peptidomimetic, non-cleavable substrate analogues. This review describes strategies targeting BACE mRNA recognition and its down-regulation based on the antisense action of small inhibitory nucleic acids (siNAs). These include antisense oligonucleotides, catalytic nucleic acids - ribozymes and deoxyribozymes - as well as small interfering RNAs (siRNAs). While antisense oligonucleotides were first used to identify an aspartyl protease with beta-secretase activity, all the strategies now demonstrate that siNAs are able to inhibit BACE gene expression in a sequence-specific manner, measured both at the level of its mRNA and at the level of protein. Moreover, knock-down of BACE reduces the intra- and extracellular population of Abeta40 and Abeta42 peptides. An anti-amyloid effect of siNAs is observed in a wide spectrum of cell lines as well as in primary cortical neurons. Thus targeting BACE with small inhibitory nucleic acids may be beneficial for the treatment of Alzheimer's disease and for future drug design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom