z-logo
open-access-imgOpen Access
Regulation of nuclear phospholipase C activity.
Author(s) -
Lucia Manzoli,
Anna Maria Billi,
Alberto M. Martelli,
Lucio Cocco
Publication year - 2004
Publication title -
acta biochimica polonica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.452
H-Index - 78
eISSN - 1734-154X
pISSN - 0001-527X
DOI - 10.18388/abp.2004_3578
Subject(s) - microbiology and biotechnology , nucleus , phospholipase c , phosphorylation , mapk/erk pathway , chemistry , gene isoform , signal transduction , kinase , gtp' , subcellular localization , cell nucleus , cytoplasm , biology , biochemistry , gene , enzyme
A body of evidence, linking inositide-specific phospholipase C (PI-PLC) to the nucleus, is quite extensive. The main isoform in the nucleus is PI-PLCbeta1, whose activity is up-regulated in response to insulin-like growth factor-1 (IGF-1) or insulin stimulation. Whilst at the plasma membrane this PI-PLC is activated and regulated by Galphaq/alpha(11) and Gbetagamma subunits, there is yet no evidence that qalpha/alpha(11) is present within the nuclear compartment, neither GTP-gamma-S nor AlF4 can stimulate PI-PLCbeta1 activity in isolated nuclei. Here we review the evidence that upon occupancy of type 1 IGF receptor there is translocation to the nucleus of phosphorylated mitogen-activated protein kinase (MAPK) which phosphorylates nuclear PI-PLCbeta1 and triggers its signalling, hinting at a separate pathway of regulation depending on the subcellular location of PI-PLCbeta1. The difference in the regulation of the activity of PI-PLCbeta1mirrors the evidence that nuclear and cytoplasmatic inositides can differ markedly in their signalling capability. Indeed, we do know that agonists which affect nuclear inositol lipid cycle at the nucleus do not stimulate the one at the plasma membrane.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom