z-logo
open-access-imgOpen Access
Recognition of Student Classroom Behaviors Based on Moving Target Detection
Author(s) -
Bin Wu,
Chunmei Wang,
Wei Huang,
Da Huang,
Hang Peng
Publication year - 2021
Publication title -
traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380123
Subject(s) - class (philosophy) , computer science , tracking (education) , artificial intelligence , computer vision , pattern recognition (psychology) , mathematics education , psychology , pedagogy
Classroom teaching, as the basic form of teaching, provides students with an important channel to acquire information and skills. The academic performance of students can be evaluated and predicted objectively based on the data on their classroom behaviors. Considering the complexity of classroom environment, this paper firstly envisages a moving target detection algorithm for student behavior recognition in class. Based on region of interest (ROI) and face tracking, the authors proposed two algorithms to recognize the standing behavior of students in class. Moreover, a recognition algorithm was developed for hand raising in class based on skin color detection. Through experiments, the proposed algorithms were proved as effective in recognition of student classroom behaviors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom