z-logo
open-access-imgOpen Access
Classification of Remote Sensing Images Through Reweighted Sparse Subspace Representation Using Compressed Data
Author(s) -
Jianchen Zhu,
Shengjie Zhao,
Di Wu
Publication year - 2021
Publication title -
traitement du signal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.279
H-Index - 11
eISSN - 1958-5608
pISSN - 0765-0019
DOI - 10.18280/ts.380103
Subject(s) - linear subspace , cluster analysis , compressed sensing , hyperspectral imaging , computer science , spectral clustering , artificial intelligence , subspace topology , sparse approximation , pattern recognition (psychology) , k svd , data cube , algorithm , mathematics , data mining , geometry
In many real-world scenarios, subspace clustering essentially aims to cluster unlabeled high-dimensional data into a union of finite-dimensional linear subspaces. The problem is that the data are always high-dimensional, with the increase of the computation, storge, and communication of various intelligent data-driven systems. This paper attempts to develop a method to cluster spectral images directly using the measurements of compressive coded aperture snapshot spectral imager (CASSI), eliminating the need to reconstruct the entire data cube. Assuming that compressed measurements are drawn from multiple subspaces, a novel algorithm was developed by solving a 1-norm minimization problem, which is known as reweighted sparse subspace clustering (RSSC). The proposed algorithm clusters the compressed measurements into different subspaces, which greatly improves the clustering accuracy over the SSC algorithm by adding a reweighted step. The compressed CASSI measurements obtained using the coherence-based coded aperture can improve the performance of the proposed spectral image clustering method. The accuracy of our spectral image clustering approach was verified through simulations on two real datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom