z-logo
open-access-imgOpen Access
Tracking and Extracting Action Trajectory of Athlete Based on Hierarchical Features
Author(s) -
Tao Pan
Publication year - 2020
Publication title -
ingénierie des systèmes d information
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 8
eISSN - 2116-7125
pISSN - 1633-1311
DOI - 10.18280/isi.250515
Subject(s) - feature extraction , computer science , artificial intelligence , pattern recognition (psychology) , feature (linguistics) , action (physics) , computer vision , partition (number theory) , feature vector , image (mathematics) , mathematics , philosophy , linguistics , physics , quantum mechanics , combinatorics
The feature extraction from athlete action images is a research hotspot. To accurately evaluate athlete actions, it is necessary to partition the original image into refined blocks, and extract different levels of image features. However, the traditional feature extraction algorithms can only roughly divide action images into several classes, failing to acquire the accurate feature sets of the actions. This leads to relatively poor performance of feature extraction from action images. To overcome the defect of the traditional methods, this paper puts forward a feature extraction method for the action images of badminton players based on hierarchical features. The underlying image features were analyzed based on the techniques of badminton players, and mapped to the feature space of the corresponding dimension. Simulation results show that the proposed method can accurately extract the features from athlete action images.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom