Resource Classification and Knowledge Aggregation of Library and Information Based on Data Mining
Author(s) -
Xiao Qin
Publication year - 2020
Publication title -
ingénierie des systèmes d information
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 8
eISSN - 2116-7125
pISSN - 1633-1311
DOI - 10.18280/isi.250512
Subject(s) - computer science , resource (disambiguation) , service (business) , big data , support vector machine , data mining , knowledge extraction , information retrieval , data science , database , machine learning , computer network , economy , economics
Received: 5 June 2020 Accepted: 29 September 2020 The traditional knowledge service systems have nonuniform data structures. Some data are structured, while some are semi-structured and even non-structured. Big data technology helps to optimize the integration and retrieval of the massive data on library and information (L&I), making it possible to classify the resources and optimize the configuration of L&I resource platforms according to user demand. Therefore, this paper introduces the new information service model of big data resources and knowledge services to the processing of L&I data. Firstly, the data storage structure and relationship model of the L&I resource platform were established, and used to sample and integrate the keywords of resource retrieval. Next, an L&I resource classification model was constructed based on support vector machine (SVM), and applied to extract and quantify the attributes of the keywords of resource retrieval. After that, a knowledge aggregation model was developed for a complex network of multiple L&I resource platforms. Experimental results demonstrate the effectiveness of the proposed knowledge aggregation model. The research findings provide a reference for the application of data mining in resource classification.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom