z-logo
open-access-imgOpen Access
Number of Pixel Change Rate and Unified Average Changing Intensity for Sensitivity Analysis of Encrypted inSAR Interferogram
Author(s) -
Riad Saidi,
Nada Cherrid,
Tarek Bentahar,
Hichem Mayache,
Atef Bentahar
Publication year - 2020
Publication title -
ingénierie des systèmes d information
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 8
eISSN - 2116-7125
pISSN - 1633-1311
DOI - 10.18280/isi.250507
Subject(s) - encryption , sensitivity (control systems) , computer science , pixel , cryptosystem , advanced encryption standard , key (lock) , algorithm , mode (computer interface) , artificial intelligence , electronic engineering , computer security , engineering , operating system
The transmission of images from satellites to earth is on the brink of many threats which can affect the confidentiality of the data as well as its quality. Several encryption algorithms are used to secure the transmitted images. The objective in this work is to analyze the sensitivity of a particular type of satellite image, which is an interferogram from interferometric imaging systems inSAR system. This image is encrypted by cryptosystem based on the Advanced Encryption Standard with key length of 256 bits (AES-256) standard and the asymmetric Rivest, Shamir & Adelman (RSA) encryption algorithm using Counter-mode encryption (CTR) mode and Output FeedBack (OFB) mode. The analysis made in this paper is carried out on two types of sensitivity. The first analysis is the sensitivity to change of a pixel in the original interferogram and the second is the sensitivity to the key. Two parameters are used to assess sensitivity: The Number of Pixel Change Rate (NPCR) and the Unified Average Changing Intensity (UACI). The obtained results show that the two modes AES-256-OFB and AES-256-CTR are favorable but cannot be implemented on board a satellite without providing a mechanism capable of compensating for the low resistance to error propagation. Metrics on the clear and encrypted interferogram are exploited such as the Structural Similarity Index (SSIM), Gradient-based Structural Similarity (GSSIM), The use of these metrics, allowed us to see that a change of one pixel in the interferogram and the change of the encryption key will affect the quality of the interferogram, as well as a statistical histogram analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom