Classification of Alzheimer's Disease MRI Images with CNN Based Hybrid Method
Author(s) -
Muhammed Yıldırım,
Ahmet Çınar
Publication year - 2020
Publication title -
ingénierie des systèmes d information
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 8
eISSN - 2116-7125
pISSN - 1633-1311
DOI - 10.18280/isi.250402
Subject(s) - disease , artificial intelligence , computer science , medicine , pattern recognition (psychology) , computer vision , pathology
Received: 28 June 2020 Accepted: 2 August 2020 Alzheimer is a type of dementia disease that is common in older ages. This disease is a progressive form of neurological disease that causes the destruction of brain cells. Since Alzheimer's is a progressive disease, various problems increase over time. For this reason, it is very important to diagnose the disease early and start the treatment process. In this study, it was tried to determine at which stage the disease is or whether it is Alzheimer using brain images. CNN architectures are used to diagnose the disease. In addition, a hybrid method we have developed has been proposed. With the architectures used, it is classified in 4 stages according to the disease progression level. In the proposed hybrid model, the Resnet50 method is used as the basis. The results are obtained separately by Alexnet, Resnet50, Densenet201, Vgg16, and the Hybrid method we developed. An accuracy of 90% has been achieved with the developed hybrid model. Consequently, when other scientific paper in the literature are investigated, it is finalized that the hybrid model developed to diagnose Alzheimer’s disease has achieved the success achieved by other CNN architectures and even offers better results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom