Efficient Neighborhood Density Based Outlier Detection Inside a Sub Network with High Dimensional Data
Author(s) -
Chippada Nagamani,
Suneetha Chittineni
Publication year - 2019
Publication title -
ingénierie des systèmes d information
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 8
eISSN - 2116-7125
pISSN - 1633-1311
DOI - 10.18280/isi.240116
Subject(s) - anomaly detection , high dimensional , computer science , outlier , data mining , clustering high dimensional data , artificial intelligence , cluster analysis
Received: 14 November 2018 Accepted: 26 January 2019 Anomaly recognition has been utilized to recognize the exception and remove anomalies from different sorts of information and networks. It has imperative applications in the field of failure recognition, network strength examination, Medical Outlier Detection, Industrial Damage recognition. Detecting few anomalies from a network of information perceptions is a continually testing method. The primary commitment of this work is to build up a technique that can register the neighborhood density based anomalies proficiently in high dimensional information. In this paper, we have demonstrated that the dataset is divided into multiple subsets and checked for exceptions which make the task of outlier detection easy. The exceptions are then consolidated from various subsets. In this way, the neighborhood density based anomalies can be figured effectively. In this paper Density Based Outlier Detection (DBOD) method is proposed which divides the network into sub networks and identifies outliers on them.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom