z-logo
open-access-imgOpen Access
SUITABILITY OF MOULDING MATERIALS FOR Al-Li ALLOY CASTING
Author(s) -
Bastri Zeka,
Boštjan Markoli,
Primož Mrvar,
Jožef Medved,
Mitja Petrič
Publication year - 2021
Publication title -
materiali in tehnologije
Language(s) - English
Resource type - Journals
eISSN - 1580-3414
pISSN - 1580-2949
DOI - 10.17222/mit.2020.208
Subject(s) - materials science , graphite , casting , inert gas , alloy , metallurgy , porosity , coating , aluminate , sand casting , composite material , mold , cement
The paper describes the production of an AlSi7Mg cast alloy with Li additions and the reactions of the melt with different moulding materials. It is known that Li is very reactive and tends to form various reaction products such as oxides, gases, etc., which can influence the casting quality. The aim of the research was to find a suitable way to produce such an alloy and to describe the reaction products that are formed between the melt and the moulding material and thus to find a suitable moulding material for processing Al cast alloys with Li additions. The melt was produced in an induction furnace under an inert atmosphere. After melting, 1 w/% Li was added and the melt was cast into five different mould materials consisting of graphite, steel, a CO2 sand mixture, Croning mixture and calcium silicate materials. In the last three cases, various alcohol-based coatings were also used, such as graphite, zirconium oxide-graphite coating and aluminate-graphite filler coating. The results showed that the reaction products in the form of powder on the casting surfaces and the gas porosity in the castings occurred in the cast of a calcium silicate mould and sand mould mixtures. In the case of graphite and steel moulds, the casting surfaces were not oxidised, with no reaction products, and no gas porosity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom