z-logo
open-access-imgOpen Access
Chemokine Receptor CXCR3 Mediates T Cell Recruitment and Tissue Injury in Nephrotoxic Nephritis in Mice
Author(s) -
Ulf Panzer,
Oliver M. Steinmetz,
HansJoachim Paust,
Catherine Meyer-Schwesinger,
Anett Peters,
JanEric Turner,
Gunther Zahner,
Felix Heymann,
Christian Kurts,
Helmut Hopfer,
Udo Helmchen,
Friedrich Haag,
André Schneider,
Rolf A.K. Stahl
Publication year - 2007
Publication title -
journal of the american society of nephrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.451
H-Index - 279
eISSN - 1533-3450
pISSN - 1046-6673
DOI - 10.1681/asn.2006111237
Subject(s) - cxcr3 , nephritis , chemokine , chemokine receptor , immunology , medicine , albuminuria , immune system , t cell , kidney
The chemokine receptor CXCR3 is highly expressed on Th1 polarized T cells and has been predicted to play an important role in T cell recruitment and immune response in a number of inflammatory and autoimmune diseases. For testing whether CXCR3 plays a role in renal inflammation, CXCR3-deficient mice were generated and nephrotoxic nephritis was induced in C57BL/6 CXCR3(-/-) and C57BL/6 wild-type mice. Induction of the nephrotoxic nephritis leads to an increased renal mRNA expression of IP-10/CXCL10 (8.6-fold), Mig/CXCL9 (2.3-fold), and I-TAC/CXCL11 (4.9-fold) during the autologous phase at days 7 and 14. This increased chemokine expression was paralleled by the renal infiltration of T cells, followed by renal tissue injury, albuminuria, and loss of renal function. Compared with wild-type mice, CXCR3-deficient mice had significantly reduced renal T cell infiltrates. Moreover, CXCR3(-/-) mice developed less severe nephritis, with significantly lower albuminuria, better renal function, and a reduced frequency of glomerular crescent formation. Nephritic wild-type and CXCR3(-/-) mice both elicited an efficient systemic nephritogenic immune response in terms of antigen-specific IgG production and IFN-gamma expression by splenocytes in response to the nephritogenic antigen. These findings indicate that the ameliorated nephritis in CXCR3-deficient mice is due to impaired renal trafficking of effector T cells rather than their inability to mount an efficient humoral or cellular immune response. The neutralization of CXCR3 might be a promising therapeutic strategy for Th1-dependent inflammatory renal disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom