z-logo
open-access-imgOpen Access
Comprehensive Mutation Screening in 55 Probands with Type 1 Primary Hyperoxaluria Shows Feasibility of a Gene-Based Diagnosis
Author(s) -
Carla G. Monico,
Sandro Rossetti,
Heidi A. Schwanz,
Julie B. Olson,
Patrick A. Lundquist,
D. Brian Dawson,
Peter C. Harris,
Dawn S. Milliner
Publication year - 2007
Publication title -
journal of the american society of nephrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.451
H-Index - 279
eISSN - 1533-3450
pISSN - 1046-6673
DOI - 10.1681/asn.2006111230
Subject(s) - genetics , primary hyperoxaluria , biology , frameshift mutation , allelic heterogeneity , locus (genetics) , missense mutation , proband , exon , mutation , gene , kidney
Mutations in AGXT, a locus mapped to 2q37.3, cause deficiency of liver-specific alanine:glyoxylate aminotransferase (AGT), the metabolic error in type 1 primary hyperoxaluria (PH1). Genetic analysis of 55 unrelated probands with PH1 from the Mayo Clinic Hyperoxaluria Center, to date the largest with availability of complete sequencing across the entire AGXT coding region and documented hepatic AGT deficiency, suggests that a molecular diagnosis (identification of two disease alleles) is feasible in 96% of patients. Unique to this PH1 population was the higher frequency of G170R, the most common AGXT mutation, accounting for 37% of alleles, and detection of a new 3' end deletion (Ex 11_3'UTR del). A described frameshift mutation (c.33_34insC) occurred with the next highest frequency (11%), followed by F152I and G156R (frequencies of 6.3 and 4.5%, respectively), both surpassing the frequency (2.7%) of I244T, the previously reported third most common pathogenic change. These sequencing data indicate that AGXT is even more variable than formerly believed, with 28 new variants (21 mutations and seven polymorphisms) detected, with highest frequencies on exons 1, 4, and 7. When limited to these three exons, molecular analysis sensitivity was 77%, compared with 98% for whole-gene sequencing. These are the first data in support of comprehensive AGXT analysis for the diagnosis of PH1, obviating a liver biopsy in most well-characterized patients. Also reported here is previously unavailable evidence for the pathogenic basis of all AGXT missense variants, including evolutionary conservation data in a multisequence alignment and use of a normal control population.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here