z-logo
open-access-imgOpen Access
The Continuous Erythropoietin Receptor Activator Affects Different Pathways of Diabetic Renal Injury
Author(s) -
Jan Menne,
Joon-Keun Park,
Nelli Shushakova,
Michael Mengel,
Matthias Meier,
Danilo Fliser
Publication year - 2007
Publication title -
journal of the american society of nephrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.451
H-Index - 279
eISSN - 1533-3450
pISSN - 1046-6673
DOI - 10.1681/asn.2006070699
Subject(s) - medicine , erythropoietin , endocrinology , placebo , hematocrit , albuminuria , kidney , alternative medicine , pathology
This study explored the tissue-protective properties of the continuous erythropoietin receptor activator (CERA) in an experimental model of (nonischemic) diabetic kidney injury (i.e., the db/db mouse). Mice were randomly treated with placebo (n = 25), low-dosage CERA (n = 25), and high-dosage CERA (n = 25). Also studied were 25 nondiabetic db/m mice. Hematocrit was comparable in placebo and low-dosage CERA-treated mice but increased significantly with high-dosage CERA (P < 0.01 versus both). Significantly reduced expression of TGF-beta, vascular endothelial growth factor, and collagen IV was found in glomeruli and the tubulointerstitial area with CERA treatment, and these beneficial molecular effects were clearly dosage dependent (both P < 0.05 versus placebo). Similarly, CERA treatment caused a dosage-dependent increase in p-Akt, nephrin, and perlecan tissue expression (all P < 0.05 versus placebo). However, the accelerated mesangial expansion that was observed in placebo-treated db/db mice (versus db/m controls) was significantly reduced only in low-dosage CERA-treated mice (P < 0.01). Moreover, albuminuria was significantly reduced in low- but not high-dosage CERA-treated mice compared with placebo treatment (P < 0.05). In an ancillary study, phlebotomy was performed in high-dosage CERA-treated db/db mice to keep hematocrit within normal (baseline) levels. This procedure resulted in significantly (P < 0.05) less albuminuria as compared with high-dosage CERA-treated mice without phlebotomy, thus preserving the tissue-protective potential of CERA. Long-term CERA treatment has beneficial dosage-dependent effects on molecular pathways of diabetic kidney damage. Low-dosage CERA does not affect hematocrit and therefore may be a feasible method of tissue protection in this setting.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here