
Development of Overt Proteinuria in the Munich Wistar Fro[Combining Diaeresis]mter Rat Is Suppressed by Replacement of Chromosome 6 in a Consomic Rat Strain
Author(s) -
Angela Schulz,
Judith Weiss,
Maria Schlesener,
Jonna Hänsch,
Markus Wehland,
Norbert Wendt,
Peter Koßmehl,
Angelia Sietmann,
Daniela Grimm,
Monika Stoll,
Jens Randel Nyengaard,
Reinhold Kreutz
Publication year - 2007
Publication title -
journal of the american society of nephrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.451
H-Index - 279
eISSN - 1533-3450
pISSN - 1046-6673
DOI - 10.1681/asn.2006030206
Subject(s) - strain (injury) , proteinuria , chromosome , medicine , endocrinology , cancer research , chemistry , biochemistry , kidney , gene
In a cross between the Munich Wistar Frömter (MWF) rat and spontaneously hypertensive rats (SHR), a major quantitative trait locus (QTL) was identified on rat chromosome 6 (RNO6) that demonstrated the strongest linkage to albuminuria among several QTL identified. The QTL represented the only locus that is linked to both early-onset albuminuria and increased renal interstitial fibrosis in adult animals. A consomic MWF-6(SHR) strain in which chromosome 6 from SHR was introgressed into the MWF background therefore was generated to test the relevance of this QTL. Phenotype analysis at 8 wk of age revealed that early onset of albuminuria in MWF with a 55-fold elevation of urinary albumin excretion compared with SHR (P < 0.0001) was completely abolished in MWF-6(SHR). Time-course analysis until week 24 demonstrated only a moderate increase of urinary albumin excretion in MWF-6(SHR), whereas MWF reached levels in the nephrotic range (16.6 +/- 3.5 versus 162.6 +/- 16.0 mg/24 h; P < 0.0001). At this age, analysis of glomerulosclerosis, tubulointerstitial damage, renal interstitial fibrosis, and renal collagen III mRNA expression revealed a significant improvement of all parameters in MWF-6(SHR) compared with MWF (P < 0.05). At 32 wk, MWF but not MWF-6(SHR) demonstrated overt proteinuria (354.6 +/- 37.6 versus 48.8 +/- 13.2; P < 0.0001), whereas serum urea, cholesterol, and triglyceride concentrations were lower and creatinine clearance was higher in MWF-6(SHR) compared with MWF (P < 0.05). Therefore, although albuminuria in MWF is determined by a complex interplay of several QTL, our data demonstrate that genetic exchange of one locus on RNO6 leads to marked suppression of early-onset albuminuria and renal damage in MWF.