z-logo
open-access-imgOpen Access
Calorie Restriction Modulates Renal Expression of Sterol Regulatory Element Binding Proteins, Lipid Accumulation, and Age-Related Renal Disease
Author(s) -
Tao Jiang,
Scott E. Liebman,
M. Scott Lucia,
Carrie L. Phillips,
Moshe Levi
Publication year - 2005
Publication title -
journal of the american society of nephrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.451
H-Index - 279
eISSN - 1533-3450
pISSN - 1046-6673
DOI - 10.1681/asn.2004080701
Subject(s) - endocrinology , medicine , glomerulosclerosis , triglyceride , kidney , cholesterol , sterol regulatory element binding protein , biology , chemistry , proteinuria , sterol
Sterol regulatory element binding proteins (SREBP) are major regulators of fatty acid and cholesterol synthesis. This study found that age-related renal matrix deposition and proteinuria were associated with increased renal expression of SREBP-1 and SREBP-2 and increased renal accumulation of triglyceride and cholesterol. Because calorie restriction (CR) modulates age-related renal disease, it then was determined whether the effects of CR are mediated partially by modulation of renal lipid metabolism. Compared with ad libitum (AL)-fed 24-month-old (24 m) F344BN rats, CR resulted in significant decreases in extracellular matrix accumulation (periodic acid-Schiff staining and immunofluorescence of type IV collagen and fibronectin) and proteinuria. A significant decrease was also observed in the renal expression of growth factors (connective tissue growth factor and vascular endothelial growth factor) and matrix metalloproteinase inhibitor (plasminogen activator inhibitor-1). These structural and functional changes were associated with significant decreases in renal nuclear SREBP-1 (5.2 in 24 m AL versus 3.3 densitometry units in 24 m CR; P < 0.01) and SREBP-2 (7.1 in 24 m AL versus 4.1 densitometry units in 24 m CR; P < 0.01) protein abundance and renal triglyceride and cholesterol contents. It is interesting that serum leptin level was significantly increased as a function of aging, and CR resulted in significant reduction in serum leptin level. Because it was shown previously that increased renal expression of SREBP-1a per se caused renal lipid accumulation, glomerulosclerosis, and proteinuria, the results suggest that CR modulates age-related renal disease in part by modulation of renal SREBP expression and renal lipid accumulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here