z-logo
open-access-imgOpen Access
Functional Responses and Prey-Stage Preferences of a Predatory Gall Midge and Two Predacious Mites with Twospotted Spider Mites,TetranychusUrticae, as Host
Author(s) -
Yingfang Xiao,
Lance S. Osborne,
Jianjun Chen,
Cindy L. McKenzie
Publication year - 2013
Publication title -
journal of insect science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.551
H-Index - 49
ISSN - 1536-2442
DOI - 10.1673/031.013.0801
Subject(s) - biology , tetranychus urticae , spider , midge , predation , cecidomyiidae , gall , natural enemies , host (biology) , functional response , zoology , botany , acari , ecology , predator
The twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is an important pest of vegetables and other economically important crops. This study evaluated the functional responses and prey-stage preferences of three species of predators, a predatory gall midge, Feltiella acarisuga (Vallot) (Diptera: Cecidomyiidae), and two predatory mite species, Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) and Amblyseius swirskii (AnthiasHenriot), with T. urticae as the host, under laboratory conditions. The results showed that F. acarisuga was highly effective and the two species of predacious mites were moderately effective in feeding on T. urticae eggs. Logistic regression analysis suggested Type II (convex) functional responses for all three species. However, based on the estimates of the handling time and the attacking rates, the three predators had different predation capacities. Among the three species, F. acarisuga had the highest predation on T. urticae . The maximum daily predation by a larval F. acarisuga was 50 eggs/day, followed by a female N. californicus (25.6 eggs/day) and a female A. swirskii (15.1 eggs/day). A female N. californicus produced more eggs than a female A. swirskii did when they both fed on T. urticae eggs. In addition, all three predator species had no preystage preference for either prey eggs or nymphs. The findings from this study could help select better biological control agents for effective control of T. urticae and other pests in vegetable productions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom