Isolation and Characterization of a Baculovirus Associated with the Insect Parasitoid Wasp,Cotesiamarginiventris, or Its Host,Trichoplusia ni
Author(s) -
James J. Grasela,
Arthur H. McIntosh,
Kent S. Shelby,
S. H. Long
Publication year - 2008
Publication title -
journal of insect science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.551
H-Index - 49
ISSN - 1536-2442
DOI - 10.1673/031.008.4201
Subject(s) - biology , autographa californica , trichoplusia , anticarsia gemmatalis , braconidae , noctuidae , helicoverpa zea , heliothis , heliothis virescens , nuclear polyhedrosis virus , lepidoptera genitalia , baculoviridae , parasitoid wasp , virology , spodoptera , parasitoid , botany , virus , genetics , biological pest control , gene , recombinant dna
A multiple nucleopolyhedrovirus (MNPV) was isolated from Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) larvae that had been stung by the parasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). The wild type virus was plaque purified by infecting a Heliothis subflexa (BCIRL- HsAM1) cell line and isolating several clones. The mean estimated genomic size of this virus based on PstI, BstEII, StyI, HindIII restriction profiles was estimated to be 106 +/- 2.5 kbp (mean+/-SE). A clone designated as TnMNPV/CmBCL9 was used in bioassays against several lepidopteran pests and in comparative studies with the baculoviruses AcMNPV, AgMNPV, AfMNPV, PxMNPV and HzSNPV of Autographa califomica, Anticarsia gemmatalis, Anagrapha falcifera, Plutella xylostella, and Helicoverpa zea, respectively. Infectivity studies showed that TnMNPV/CmBCL9 was highly infectious for Heliothis subflexa and T. ni, with an LC(50) value 0.07 occlusion bodies/mm(2) in both species and also infectious for H. zea and Heliothis virescens with LC(50) values of 0.22 and 0.27 occlusion bodies/mm(2), respectively. Restriction endonuclease analysis of the isolate and selected baculoviruses revealed profiles that were very similar to AfMNPV but different from the restriction endonuclease profiles of the other baculoviruses. Hybridization studies suggest that the TnMNPV/CmBCL9 was closely related to AfMNPV and AcMNPV-HPP. Further support for this comes from a phylogenetic analysis employing a split-graphs network, comparing the polh, egt, and p10 genes from TnMNPV/CmBCL9 with those from other baculoviruses and suggests that this virus is closely related to the AcMNPV variants, AfMNPV and RoMNPV of Rachiplusia ou.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom