ON THE ALLOMETRIC RELATIONSHIP BETWEEN SIZE AND COMPOSITION OF AVIAN EGGS: A REASSESSMENT
Author(s) -
Todd W. Arnold,
Andy J. Green
Publication year - 2007
Publication title -
ornithological applications
Language(s) - Spanish
Resource type - Journals
SCImago Journal Rank - 0.874
H-Index - 78
eISSN - 1938-5129
pISSN - 0010-5422
DOI - 10.1650/7902.1
Subject(s) - allometry , statistics , regression , component (thermodynamics) , mathematics , regression analysis , ordinary least squares , linear regression , composition (language) , econometrics , observational error , biology , biological system , ecology , physics , linguistics , philosophy , thermodynamics
Numerous investigators have used al- lometric regression to characterize the relationship between proportional egg composition and egg size, which is a potentially important characterization for assessing maternal investment in reproduction. Here- in, we document two important shortcomings of this approach. First, regressing log component mass against log egg mass involves regressing Y on itself, since each component (Y) is necessarily a part of the whole egg (X). This creates correlated errors, which leads to biased estimates of the regression slope. To circumvent this problem, we recommend regressing egg component masses on a relatively inert compo- nent like total water mass. Secondly, investigators routinely use ordinary least squares regression to estimate the slope of allometric relationships, which assumes that all error resides in Y. We demonstrate that this assumption is false, but so are the un- derlying error assumptions of commonly used alter- natives such as reduced major axis and major axis regression. Because each egg is unique and de- termining composition involves destructive sampling, there is no obvious way to assess measurement error in Y versus X. As a solution, we recommend that investigators analyze multiple eggs per clutch when- ever possible and fit a reduced major axis based on the among-female component of variabilityNumerosos investigaciones han usado regresiones alome´tricas para caracterizar la relacio´n entre la proporcio´ n de la composicio´ n del huevo y el taman˜ o del huevo, lo cual representa una caracter- izacio´ n potencialmente importante para evaluar la inversio´ n materna en la reproduccio´ n. Aqu´ı docu- mentamos dos limitaciones importantes de este enfoque. Primero, la regresio´ n del logaritmo de los componentes sobre el logaritmo de la masa del huevo representa la regresio´ n de Y sobre s´ı misma, ya que cada componente (Y) es necesariamente una parte del huevo completo (X). Esto genera errores correlacio- nados, lo cual lleva a estimados sesgados de la pendiente de la regresio´ n. Para evitar este problema, recomendamos hacer una regresio´ n de los compo- nentes de la masa del huevo sobre un componente relativamente inerte, como la masa total de agua. Segundo, los investigadores usan de forma rutinaria regresiones comunes de m´ınimos cuadrados para estimar la pendiente de las relaciones alome´tricas, lo cual supone que todo el error reside en Y. Demos- tramos que esta suposicio´ n es falsa, al igual que las suposiciones del error subyacente de las alternativas comu´ nmente usadas como la reduccio´ n del eje mayor y la regresio´ n del eje mayor. Debido a que cada huevo es u´ nico y a que la determinacio´ n de la composicio´ n requiere la destruccio´ n de muestras, no existe un modo obvio para determinar el error de medicio´ n de Y versus X. Como solucio´ n, recomen- damos que los investigadores analicen mu´ ltiples huevos por nidada cuando sea posible y que ajusten un eje mayor reducido basado en el componente de variabilidad entre hembras.Peer reviewe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom