
Cancer‐Derived Lysophosphatidic Acid Stimulates Differentiation of Human Mesenchymal Stem Cells to Myofibroblast‐Like Cells
Author(s) -
Jeon Eun Su,
Moon Hyun Jung,
Lee Mi Jeong,
Song Hae Young,
Kim Young Mi,
Cho Mong,
Suh DongSoo,
Yoon ManSoo,
Chang Chulhun L.,
Jung Jin Sup,
Kim Jae Ho
Publication year - 2008
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1634/stemcells.2007-0742
Subject(s) - lysophosphatidic acid , biology , mesenchymal stem cell , cancer research , myofibroblast , cancer cell , microbiology and biotechnology , stromal cell , receptor , medicine , cancer , biochemistry , fibrosis , genetics
Lysophosphatidic acid (LPA) is enriched in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests cancer‐associated myofibroblasts play a pivotal role in tumorigenesis through secreting stromal cell‐derived factor‐1 (SDF‐1). In the present study, we demonstrate that LPA induces expression of α‐smooth muscle actin (α‐SMA), a marker for myofibroblasts, in human adipose tissue‐derived mesenchymal stem cells (hADSCs). The LPA‐induced expression of α‐SMA was completely abrogated by pretreatment of the cells with Ki16425, an antagonist of LPA receptors, or by silencing LPA 1 or LPA 2 isoform expression with small interference RNA (siRNA). LPA elicited phosphorylation of Smad2/3, and siRNA‐mediated depletion of endogenous Smad2/3 or adenoviral expression of Smad7, an inhibitory Smad, abrogated the LPA induced expression of α‐SMA and phosphorylation of Smad2/3. LPA‐induced secretion of transforming growth factor (TGF)‐β1 in hADSCs, and pretreatment of the cells with SB431542, a TGF‐β type I receptor kinase inhibitor, or anti‐TGF‐β1 neutralizing antibody inhibited the LPA‐induced expression of α‐SMA and phosphorylation of Smad2. Furthermore, ascites from ovarian cancer patients or conditioned medium from ovarian cancer cells induced expression of α‐SMA and phosphorylation of Smad2, and pretreatment of the cells with Ki16425 or SB431542 abrogated the expression of α‐SMA and phosphorylation of Smad2. In addition, LPA increased the expression of SDF‐1 in hADSCs, and pretreatment of the cells with Ki16425 or SB431562 attenuated the LPA‐stimulated expression of SDF‐1. These results suggest that cancer‐derived LPA stimulates differentiation of hADSCs to myofibroblast‐like cells and increases SDF‐1 expression through activating autocrine TGF‐β1‐Smad signaling pathway. Disclosure of potential conflicts of interest is found at the end of this article.