z-logo
open-access-imgOpen Access
Efficient Differentiation of Hepatocytes from Human Embryonic Stem Cells Exhibiting Markers Recapitulating Liver Development In Vivo
Author(s) -
Hay David C.,
Zhao Debiao,
Fletcher Judy,
Hewitt Zoë A.,
McLean Doris,
UrruticoecheaUriguen Alai,
Black James R.,
Elcombe Cliff,
Ross James A.,
Wolf Roland,
Cui Wei
Publication year - 2008
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1634/stemcells.2007-0718
Subject(s) - biology , microbiology and biotechnology , embryonic stem cell , cellular differentiation , endoderm , oncostatin m , stem cell , hepatocyte , induced pluripotent stem cell , directed differentiation , biochemistry , in vitro , immunology , interleukin 6 , cytokine , gene
The potential to differentiate human embryonic stem cells (hESCs) in vitro to provide an unlimited source of human hepatocytes for use in biomedical research, drug discovery, and the treatment of liver diseases holds great promise. Here we describe a three‐stage process for the efficient and reproducible differentiation of hESCs to hepatocytes by priming hESCs towards definitive endoderm with activin A and sodium butyrate prior to further differentiation to hepatocytes with dimethyl sulfoxide, followed by maturation with hepatocyte growth factor and oncostatin M. We have demonstrated that differentiation of hESCs in this process recapitulates liver development in vivo: following initial differentiation, hESCs transiently express characteristic markers of the primitive streak mesendoderm before turning to the markers of the definitive endoderm; with further differentiation, expression of hepatocyte progenitor cell markers and mature hepatocyte markers emerged sequentially. Furthermore, we have provided evidence that the hESC‐derived hepatocytes are able to carry out a range of hepatocyte functions: storage of glycogen, and generation and secretion of plasma proteins. More importantly, the hESC‐derived hepatocytes express several members of cytochrome P450 isozymes, and these P450 isozymes are capable of converting the substrates to metabolites and respond to the chemical stimulation. Our results have provided evidence that hESCs can be differentiated efficiently in vitro to functional hepatocytes, which may be useful as an in vitro system for toxicity screening in drug discovery. Disclosure of potential conflicts of interest is found at the end of this article.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here