Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor β through the phosphatidylinositol 3-kinase pathway
Author(s) -
Lars C. Moeller,
Xia Cao,
Alexandra M. Dumitrescu,
Hisao Seo,
Samuel Refetoff
Publication year - 2006
Publication title -
nuclear receptor signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 33
ISSN - 1550-7629
DOI - 10.1621/nrs.04020
Subject(s) - thyroid hormone receptor , thyroid , hormone , hormone receptor , thyroid hormone receptor beta , phosphatidylinositol , thyrotropin releasing hormone receptor , receptor , endocrinology , cytosol , medicine , gene , kinase , biology , thyroid hormone receptor alpha , microbiology and biotechnology , enzyme , genetics , biochemistry , cancer , breast cancer
Thyroid hormone (TH) action is mediated principally through binding of the hormone ligand, 3,3,5-triiodothyronine (T3), to TH receptors (TRs). This hormone-receptor interaction recruits other proteins to form complexes that regulate gene expression by binding to DNA sequences in the promoter of target genes. We recently described an extranuclear mechanism of TH action that consists of the association of TH-liganded TRbeta with p85alpha [regulatory subunit of phosphatidylinositol 3-kinase (PI3K)] in the cytosol and subsequent activation of the PI3K, generating phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3]. This initiates the activation of a signaling cascade by phosphorylation of Akt, mammalian target of rapamycin (mTOR) and its substrate p70(S6K), leading to the stimulation of ZAKI-4alpha synthesis, a calcineurin inhibitor. Furthermore, we found that this same mechanism leads to induction of the transcription factor hypoxia-inducible factor (HIF-1alpha), and its target genes, glucose transporter (GLUT)1, platelet-type phosphofructokinase (PFKP), and monocarboxylate transporter (MCT) 4. These genes are of special interest, because their products have important roles in cellular glucose metabolism, from glucose uptake (GLUT1) to glycolysis (PFKP) and lactate export (MCT4). These results demonstrate that the TH-TRbeta complex can exert a non-genomic action in the cytosol leading to changes in gene expression by direct (HIF-1alpha) and indirect (ZAKI-4alpha, GLUT1, PFKP) means.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom