P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm
Author(s) -
Tal Grinshpoun,
Tamir Tassa
Publication year - 2016
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.5322
Subject(s) - computer science , constraint (computer aided design) , representation (politics) , computation , process (computing) , theoretical computer science , algorithm , branch and bound , mathematics , geometry , politics , political science , law , operating system
Distributed constraint optimization problems enable the representation of many combinatorial problems that are distributed by nature. An important motivation for such problems is to preserve the privacy of the participating agents during the solving process. The present paper introduces a novel privacy-preserving branch and bound algorithm for this purpose. The proposed algorithm, P-SyncBB, preserves constraint, topology and decision privacy. The algorithm requires secure solutions to several multi-party computation problems. Consequently, appropriate novel secure protocols are devised and analyzed. An extensive experimental evaluation on different benchmarks, problem sizes, and constraint densities shows that P-SyncBB exhibits superior performance to other privacy-preserving complete DCOP algorithms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom