z-logo
open-access-imgOpen Access
DL-Lite Contraction and Revision
Author(s) -
Zhiqiang Zhuang,
Zhe Wang,
Kewen Wang,
Guilin Qi
Publication year - 2016
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.5050
Subject(s) - succinctness , axiom , computer science , theoretical computer science , game semantics , contraction (grammar) , programming language , operational semantics , inference , knowledge representation and reasoning , semantics (computer science) , algorithm , artificial intelligence , mathematics , denotational semantics , medicine , geometry
Two essential tasks in managing description logic knowledge bases are eliminating problematic axioms and incorporating newly formed ones. Such elimination and incorporation are formalised as the operations of contraction and revision in belief change. In this paper, we deal with contraction and revision for the DL-Lite family through a model-theoretic approach. Standard description logic semantics yields an infinite number of models for DL-Lite knowledge bases, thus it is difficult to develop algorithms for contraction and revision that involve DL models. The key to our approach is the introduction of an alternative semantics called type semantics which can replace the standard semantics in characterising the standard inference tasks of DL-Lite. Type semantics has several advantages over the standard one. It is more succinct and importantly, with a finite signature, the semantics always yields a finite number of models. We then define model-based contraction and revision functions for DL-Lite knowledge bases under type semantics and provide representation theorems for them. Finally, the finiteness and succinctness of type semantics allow us to develop tractable algorithms for instantiating the functions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom