Searching for the M Best Solutions in Graphical Models
Author(s) -
Natalia Flerova,
Radu Marinescu,
Rina Dechter
Publication year - 2016
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4985
Subject(s) - computer science , soundness , task (project management) , branch and bound , completeness (order theory) , upper and lower bounds , algorithm , graphical model , theoretical computer science , artificial intelligence , mathematics , mathematical analysis , management , economics , programming language
The paper focuses on finding the m best solutions to combinatorial optimization problems using best-first or depth-first branch and bound search. Specifically, we present a new algorithm m-A*, extending the well-known A* to the m-best task, and for the first time prove that all its desirable properties, including soundness, completeness and optimal efficiency, are maintained. Since best-first algorithms require extensive memory, we also extend the memory-efficient depth-first branch and bound to the m-best task. We adapt both algorithms to optimization tasks over graphical models (e.g., Weighted CSP and MPE in Bayesian networks), provide complexity analysis and an empirical evaluation. Our experiments confirm theory that the best-first approach is largely superior when memory is available, but depth-first branch and bound is more robust. We also show that our algorithms are competitive with related schemes recently developed for the m-best task.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom