z-logo
open-access-imgOpen Access
Decision Making with Dynamic Uncertain Events
Author(s) -
Meir Kalech,
Shulamit Reches
Publication year - 2015
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4869
Subject(s) - key (lock) , computer science , optimal decision , optimal stopping , mathematical optimization , function (biology) , quality (philosophy) , algorithm , decision tree , artificial intelligence , mathematics , philosophy , computer security , epistemology , evolutionary biology , biology
When to make a decision is a key question in decision making problems characterized by uncertainty. In this paper we deal with decision making in environments where information arrives dynamically. We address the tradeoff between waiting and stopping strategies. On the one hand, waiting to obtain more information reduces uncertainty, but it comes with a cost. Stopping and making a decision based on an expected utility reduces the cost of waiting, but the decision is based on uncertain information. We propose an optimal algorithm and two approximation algorithms. We prove that one approximation is optimistic - waits at least as long as the optimal algorithm, while the other is pessimistic - stops not later than the optimal algorithm. We evaluate our algorithms theoretically and empirically and show that the quality of the decision in both approximations is near-optimal and much faster than the optimal algorithm. Also, we can conclude from the experiments that the cost function is a key factor to chose the most effective algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom