z-logo
open-access-imgOpen Access
Solving #SAT and MAXSAT by Dynamic Programming
Author(s) -
Sigve Hortemo Sæther,
Jan Arne Telle,
Martin Vatshelle
Publication year - 2015
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4831
Subject(s) - maximum satisfiability problem , treewidth , propositional formula , dynamic programming , theoretical computer science , graph , computer science , satisfiability , markov decision process , mathematics , algorithm , pathwidth , boolean function , markov process , line graph , propositional variable , statistics , intermediate logic , description logic
We look at dynamic programming algorithms for propositional model counting, also called #SAT, and MaxSAT. Tools from graph structure theory, in particular treewidth, have been used to successfully identify tractable cases in many subfields of AI, including SAT, Constraint Satisfaction Problems (CSP), Bayesian reasoning, and planning. In this paper we attack #SAT and MaxSAT using similar, but more modern, graph structure tools. The tractable cases will include formulas whose class of incidence graphs have not only unbounded treewidth but also unbounded clique-width. We show that our algorithms extend all previous results for MaxSAT and #SAT achieved by dynamic programming along structural decompositions of the incidence graph of the input formula. We present some limited experimental results, comparing implementations of our algorithms to state-of-the-art #SAT and MaxSAT solvers, as a proof of concept that warrants further research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom