z-logo
open-access-imgOpen Access
BDD Ordering Heuristics for Classical Planning
Author(s) -
Peter Kissmann,
J. Hoffmann
Publication year - 2014
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4586
Subject(s) - heuristics , variable (mathematics) , binary decision diagram , computer science , variable elimination , dependency (uml) , overhead (engineering) , simple (philosophy) , representation (politics) , range (aeronautics) , binary number , mathematical optimization , heuristic , algorithm , theoretical computer science , mathematics , artificial intelligence , mathematical analysis , philosophy , materials science , arithmetic , epistemology , inference , politics , political science , law , composite material , operating system
Symbolic search using binary decision diagrams (BDDs) can often save large amounts of memory due to its concise representation of state sets. A decisive factor for this method's success is the chosen variable ordering. Generally speaking, it is plausible that dependent variables should be brought close together in order to reduce BDD sizes. In planning, variable dependencies are typically captured by means of causal graphs, and in preceding work these were taken as the basis for finding BDD variable orderings. Starting from the observation that the two concepts of "dependency" are actually quite different, we introduce a framework for assessing the strength of variable ordering heuristics in sub-classes of planning. It turns out that, even for extremely simple planning tasks, causal graph based variable orders may be exponentially worse than optimal. Experimental results on a wide range of variable ordering variants corroborate our theoretical findings. Furthermore, we show that dynamic reordering is much more effective at reducing BDD size, but it is not cost-effective due to a prohibitive runtime overhead. We exhibit the potential of middle-ground techniques, running dynamic reordering until simple stopping criteria hold.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom