z-logo
open-access-imgOpen Access
A Novel SAT-Based Approach to Model Based Diagnosis
Author(s) -
Amit Metodi,
Roni Stern,
Meir Kalech,
Michael Codish
Publication year - 2014
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4503
Subject(s) - cardinality (data modeling) , computer science , encoding (memory) , compiler , preprocessor , boolean satisfiability problem , medical diagnosis , theoretical computer science , range (aeronautics) , conjunctive normal form , algorithm , artificial intelligence , programming language , data mining , medicine , materials science , pathology , composite material
This paper introduces a novel encoding of Model Based Diagnosis (MBD) to Boolean Satisfaction (SAT) focusing on minimal cardinality diagnosis. The encoding is based on a combination of sophisticated MBD preprocessing algorithms and the application of a SAT compiler which optimizes the encoding to provide more succinct CNF representations than obtained with previous works. Experimental evidence indicates that our approach is superior to all published algorithms for minimal cardinality MBD. In particular, we can determine, for the first time, minimal cardinality diagnoses for the entire standard ISCAS-85 and 74XXX benchmarks. Our results open the way to improve the state-of-the-art on a range of similar MBD problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom