Probabilistic Inference in Credal Networks: New Complexity Results
Author(s) -
Denis Deratani Mauá,
Cassio P. de Campos,
Alessio Benavoli,
Alessandro Antonucci
Publication year - 2014
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4355
Subject(s) - bayesian network , conditional independence , computer science , graphical model , inference , independence (probability theory) , computational complexity theory , theoretical computer science , artificial intelligence , statistical inference , probabilistic logic , machine learning , mathematics , algorithm , statistics
Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove a similar result for inference in naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and naive Bayes structures are used in real applications of imprecise probability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom