z-logo
open-access-imgOpen Access
Information-Theoretic Multi-view Domain Adaptation: A Theoretical and Empirical Study
Author(s) -
Pei Yang,
Wei Gao
Publication year - 2014
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4190
Subject(s) - domain adaptation , leverage (statistics) , computer science , consistency (knowledge bases) , cluster analysis , margin (machine learning) , domain (mathematical analysis) , artificial intelligence , adaptation (eye) , word (group theory) , transfer of learning , machine learning , data mining , empirical research , mathematics , classifier (uml) , statistics , mathematical analysis , physics , geometry , optics
Multi-view learning aims to improve classification performance by leveraging the consistency among different views of data. The incorporation of multiple views was paid little attention in the studies of domain adaptation, where the view consistency based on source data is largely violated in the target domain due to the distribution gap between different domain data. In this paper, we leverage multiple views for cross-domain document classification. The central idea is to strengthen the views' consistency on target data by identifying the associations of domain-specific features from different domains. We present an Information-theoretic Multi-view Adaptation Model (IMAM) using a multi-way clustering scheme, where word and link clusters can draw together seemingly unrelated features across domains, which boosts the consistency between document clusterings that are based on the respective word and link views. Moreover, we demonstrate that IMAM can always find the document clustering with the minimal disagreement rate to the overlap of viewbased clusterings. We provide both theoretical and empirical justifications of the proposed method. Our experiments show that IMAM significantly outperforms traditional multi-view algorithm cotraining, the co-training-based adaptation algorithm CODA, the single-view transfer model CoCC and the large-margin-based multi-view transfer model MVTL-LM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom