z-logo
open-access-imgOpen Access
The Complexity of Optimal Monotonic Planning: The Bad, The Good, and The Causal Graph
Author(s) -
Carmel Domshlak,
Alex N. Nazarenko
Publication year - 2013
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4145
Subject(s) - satisficing , monotonic function , heuristic , mathematical optimization , graph , computer science , mathematics , theoretical computer science , artificial intelligence , mathematical analysis
For almost two decades, monotonic, or "delete free," relaxation has been one of the key auxiliary tools in the practice of domain-independent deterministic planning. In the particular contexts of both satisficing and optimal planning, it underlies most state-of-theart heuristic functions. While satisficing planning for monotonic tasks is polynomial-time, optimal planning for monotonic tasks is NP-equivalent. Here we establish both negative and positive results on the complexity of some wide fragments of optimal monotonic planning, with the fragments being defined around the causal graph topology. Our results shed some light on the link between the complexity of general optimal planning and the complexity of optimal planning for the respective monotonic relaxations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom