Unsupervised Sub-tree Alignment for Tree-to-Tree Translation
Author(s) -
Tong Xiao,
Jingbo Zhu
Publication year - 2013
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.4033
Subject(s) - computer science , machine translation , artificial intelligence , tree (set theory) , phrase , translation (biology) , natural language processing , nist , tree structure , probabilistic logic , synchronous context free grammar , heuristics , decoding methods , example based machine translation , algorithm , binary tree , mathematics , mathematical analysis , biochemistry , chemistry , messenger rna , gene , operating system
This article presents a probabilistic sub-tree alignment model and its application to tree-to-tree machine translation. Unlike previous work, we do not resort to surface heuristics or expensive annotated data, but instead derive an unsupervised model to infer the syntactic correspondence between two languages. More importantly, the developed model is syntactically-motivated and does not rely on word alignments. As a by-product, our model outputs a sub-tree alignment matrix encoding a large number of diverse alignments between syntactic structures, from which machine translation systems can eciently extract translation rules that are often ltered out due to the errors in 1-best alignment. Experimental results show that the proposed approach outperforms three state-of-the-art baseline approaches in both alignment accuracy and grammar quality. When applied to machine translation, our approach yields a +1.0 BLEU improvement and a -0.9 TER reduction on the NIST machine translation evaluation corpora. With tree binarization and fuzzy decoding, it even outperforms a state-of-the-art hierarchical phrase-based system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom