Multiagent Learning in Large Anonymous Games
Author(s) -
Ian A. Kash,
Eric J. Friedman,
Joseph Y. Halpern
Publication year - 2011
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.3213
Subject(s) - computer science , convergence (economics) , simple (philosophy) , nash equilibrium , fictitious play , artificial intelligence , machine learning , best response , theoretical computer science , mathematical optimization , mathematics , philosophy , epistemology , economics , economic growth
In large systems, it is important for agents to learn to act effectively, but sophisticated multi-agent learning algorithms generally do not scale. An alternative approach is to find restricted classes of games where simple, efficient algorithms converge. It is shown that stage learning efficiently converges to Nash equilibria in large anonymous games if bestreply dynamics converge. Two features are identified that improve convergence. First, rather than making learning more difficult, more agents are actually beneficial in many settings. Second, providing agents with statistical information about the behavior of others can significantly reduce the number of observations needed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom