On the Expressiveness of Levesque's Normal Form
Author(s) -
Yuanbo Liu,
Gerhard Lakemeyer
Publication year - 2008
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.2428
Subject(s) - undecidable problem , generalization , conjunctive normal form , mathematics , inference , class (philosophy) , conjecture , set (abstract data type) , rule of inference , logical consequence , propositional calculus , rewriting , discrete mathematics , computer science , decidability , artificial intelligence , programming language , mathematical analysis
Levesque proposed a generalization of a database called a proper knowledge base (KB), which is equivalent to a possibly infinite consistent set of ground literals. In contrast to databases, proper KBs do not make the closed-world assumption and hence the entailment problem becomes undecidable. Levesque then proposed a limited but efficient inference method V for proper KBs, which is sound and, when the query is in a certain normal form, also logically complete. He conjectured that for every first-order query there is an equivalent one in normal form. In this note, we show that this conjecture is false. In fact, we show that any class of formulas for which V is complete must be strictly less expressive than full first-order logic. Moreover, in the propositional case it is very unlikely that a formula always has a polynomial-size normal form.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom