z-logo
open-access-imgOpen Access
Junta Distributions and the Average-Case Complexity of Manipulating Elections
Author(s) -
Ariel D. Procaccia,
Jeffrey S. Rosenschein
Publication year - 2007
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.2148
Subject(s) - voting , computer science , constant (computer programming) , computational complexity theory , theoretical computer science , measure (data warehouse) , algorithm , data mining , political science , politics , law , programming language
Encouraging voters to truthfully reveal their preferences in an election has long been an important issue. Recently, computational complexity has been suggested as a means of precluding strategic behavior. Previous studies have shown that some voting protocols are hard to manipulate, but used NP-hardness as the complexity measure. Such a worst-case analysis may be an insufficient guarantee of resistance to manipulation. Indeed, we demonstrate that NP-hard manipulations may be tractable in the average-case. For this purpose, we augment the existing theory of average-case complexity with some new concepts. In particular, we consider elections distributed with respect to junta distributions, which concentrate on hard instances. We use our techniques to prove that scoring protocols are susceptible to manipulation by coalitions, when the number of candidates is constant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom