Rule-based Machine Learning Methods for Functional Prediction
Author(s) -
Sabine Weiß,
Nitin Indurkhya
Publication year - 1995
Publication title -
journal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.199
Subject(s) - computer science , machine learning , artificial intelligence , representation (politics) , function (biology) , disjunctive normal form , decision rule , regression , value (mathematics) , rule induction , data mining , mathematics , algorithm , statistics , evolutionary biology , politics , political science , law , biology
We describe a machine learning method for predicting the value of a real-valued function, given the values of multiple input variables. The method induces solutions from samples in the form of ordered disjunctive normal form (DNF) decision rules. A central objective of the method and representation is the induction of compact, easily interpretable solutions. This rule-based decision model can be extended to search efficiently for similar cases prior to approximating function values. Experimental results on real-world data demonstrate that the new techniques are competitive with existing machine learning and statistical methods and can sometimes yield superior regression performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom