z-logo
open-access-imgOpen Access
Maximum Likelihood Embedding of Logistic Random Dot Product Graphs
Author(s) -
Luke J. O’Connor,
Muriel Médard,
Soheil Feizi
Publication year - 2020
Publication title -
proceedings of the aaai conference on artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2374-3468
pISSN - 2159-5399
DOI - 10.1609/aaai.v34i04.5975
Subject(s) - dot product , adjacency matrix , mathematics , random graph , embedding , scaling , algorithm , computer science , graph , artificial intelligence , combinatorics , geometry
A latent space model for a family of random graphs assigns real-valued vectors to nodes of the graph such that edge probabilities are determined by latent positions. Latent space models provide a natural statistical framework for graph visualizing and clustering. A latent space model of particular interest is the Random Dot Product Graph (RDPG), which can be fit using an efficient spectral method; however, this method is based on a heuristic that can fail, even in simple cases. Here, we consider a closely related latent space model, the Logistic RDPG, which uses a logistic link function to map from latent positions to edge likelihoods. Over this model, we show that asymptotically exact maximum likelihood inference of latent position vectors can be achieved using an efficient spectral method. Our method involves computing top eigenvectors of a normalized adjacency matrix and scaling eigenvectors using a regression step. The novel regression scaling step is an essential part of the proposed method. In simulations, we show that our proposed method is more accurate and more robust than common practices. We also show the effectiveness of our approach over standard real networks of the karate club and political blogs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom