z-logo
open-access-imgOpen Access
Epistemic Integrity Constraints for Ontology-Based Data Management
Author(s) -
Marco Console,
Maurizio Lenzerini
Publication year - 2020
Publication title -
proceedings of the aaai conference on artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2374-3468
pISSN - 2159-5399
DOI - 10.1609/aaai.v34i03.5667
Subject(s) - data integrity , computer science , conceptualization , ontology , decidability , context (archaeology) , semantics (computer science) , description logic , ontology language , programming language , theoretical computer science , information retrieval , semantic web , database , artificial intelligence , epistemology , paleontology , philosophy , biology
Ontology-based data management (OBDM) is a powerful knowledge-oriented paradigm for managing data spread over multiple heterogeneous sources. In OBDM, the data sources of an information system are handled through the reconciled view provided by an ontology, i.e., the conceptualization of the underlying domain of interest expressed in some formal language. In any information systems where the basic knowledge resides in data sources, it is of paramount importance to specify the acceptable states of such information. Usually, this is done via integrity constraints, i.e., requirements that the data must satisfy formally expressed in some specific language. However, while the semantics of integrity constraints are clear in the context of databases, the presence of inferred information, typical of OBDM systems, considerably complicates the matter. In this paper, we establish a novel framework for integrity constraints in the OBDM scenarios, based on the notion of knowledge state of the information system. For integrity constraints in this framework, we define a language based on epistemic logic, and study decidability and complexity of both checking satisfaction and performing different forms of static analysis on them.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom