Evaluation and Modification of Off-Host Flea Collection Techniques Used in Northwest Uganda: Laboratory and Field Studies
Author(s) -
Jeff N. Borchert,
Rebecca J. Eisen,
Jennifer L. Holmes,
Linda A. Atiku,
Joseph T. Mpanga,
Heidi E. Brown,
Christine B. Graham,
Nackson Babi,
John A. Montenieri,
Russell E. Enscore,
Kenneth L. Gage
Publication year - 2012
Publication title -
journal of medical entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.866
H-Index - 99
eISSN - 1938-2928
pISSN - 0022-2585
DOI - 10.1603/me11045
Subject(s) - flea , xenopsylla , biology , felis , plague (disease) , ctenocephalides , host (biology) , veterinary medicine , zoology , ecology , geography , medicine , cats , archaeology
Quantifying the abundance of host-seeking fleas is critical for assessing risk of human exposure to flea-borne disease agents, including Yersinia pestis, the etiological agent of plague. Yet, reliable measures of the efficacy of existing host-seeking flea collection methods are lacking. In this study, we compare the efficacy of passive and active methods for the collection of host-seeking fleas in both the laboratory and human habitations in a plague-endemic region of northwest Uganda. In the laboratory, lighted "Kilonzo" flea traps modified with either blinking lights, the creation of shadows or the generation of carbon dioxide were less efficient at collecting Xenopsylla cheopis Rothchild and Ctenocephalides felis Bouché fleas than an active collection method using white cotton socks or cotton flannel. Passive collection using Kilonzo light traps in the laboratory collected significantly more X. cheopis than C. felis and active collection, using white socks and flannel, collected significantly more C. felis than X. cheopis. In field studies conducted in Uganda, Kilonzo traps using a flashlight were similar in their collection efficacy to Kilonzo traps using kerosene lamps. However, in contrast to laboratory studies, Kilonzo flea traps using flashlights collected a greater number of fleas than swabbing. Within human habitations in Uganda, Kilonzo traps were especially useful for collecting C. felis, the dominant species found in human habitations in this area.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom