Effect of Temperature on Development, Survival, and Fecundity ofMicroplitis manilae(Hymenoptera: Braconidae)
Author(s) -
Bo Qiu,
Zhongshi Zhou,
Shuping Luo,
Zaifu Xu
Publication year - 2012
Publication title -
environmental entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.749
H-Index - 89
eISSN - 1938-2936
pISSN - 0046-225X
DOI - 10.1603/en11101
Subject(s) - braconidae , biology , fecundity , spodoptera litura , parasitoid , lepidoptera genitalia , hymenoptera , noctuidae , zoology , larva , botany , temperate climate , pupa , exigua , horticulture , spodoptera , population , biochemistry , demography , sociology , gene , recombinant dna
Microplitis manilae Ashmead (Hymenoptera: Braconidae), a larval parasitoid, is a potential biological control agent of both Spodoptera exigua (Hübner) and Spodoptera litura (F.) (Lepidoptera: Noctuidae). Aspects of the climatic requirements for development, including survival, longevity, and fecundity of M. manilae were studied at six constant temperature regimes (17, 20, 23, 26, 29, and 32°C) in the laboratory. The results showed that developmental duration for egg, larva, pupa, and the entire immature stages shortened in response to temperature increasing from 17 to 32°C. Survival rates of different developmental stages were higher at 20-29°C than at other temperatures. Longevity of M. manilae adults shortened with increasing temperature. The maximum fecundity of M. manilae female equaled 261.0 eggs/female at 26°C. Minimum threshold temperature and effective accumulated temperature for completing a generation of M. manilae were 11.04°C and 205.98 degrees-days, respectively. Both intrinsic rate of increase (r) and finite rate of increase (λ) of M. manilae did not differ between 26 and 29°C, but those were significantly higher at 26 and 29°C than at any other temperatures. The highest net reproduction rate (r(0)) was observed at 26°C, with the value of 97.77, but the lowest was 11.79 at 32°C. These results suggest that the parasitoid is well adapted to temperate and subtropical climates, which implies a significant potential for using M. manilae to control S. exigua because most of areas occupied by these two pests belong to temperate and subtropical regions in southeastern Asia.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom