z-logo
open-access-imgOpen Access
Influence of Nutrient Levels inTamarixonDiorhabda sublineata(Coleoptera: Chrysomelidae) Survival and Fitness With Implications for Biological Control
Author(s) -
Debra Guenther,
Kevin T. Gardner,
David Thompson
Publication year - 2011
Publication title -
environmental entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.749
H-Index - 89
eISSN - 1938-2936
pISSN - 0046-225X
DOI - 10.1603/en10071
Subject(s) - biology , nutrient , larva , phosphorus , potassium , botany , agronomy , nitrogen , tamarix , ecology , chemistry , materials science , physics , organic chemistry , quantum mechanics , metallurgy
Establishment of the saltcedar leaf beetle (Diorhabda spp.) has been unpredictable when caged or released in the field for saltcedar (Tamarix spp.) biocontrol. It has been observed that one caged tree might be voraciously fed upon by beetles while an adjacent tree in the cage is left untouched. We hypothesized that differences in the nutrient content of individual trees may explain this behavior. We evaluated survival, development rate, and egg production of beetles fed in the laboratory on saltcedar foliage from trees that had been grown under a range of fertilizer treatments. Tissue samples from the experimental trees and from the field were analyzed for percent nitrogen, phosphorus, and potassium. There was essentially no survival of beetle larvae fed foliage from saltcedar trees at nitrogen levels below 2.0%. At levels above 2.0% N, beetle larvae had corresponding increased survival rates and shorter development times. Multiple regression analyses indicated that nitrogen and phosphorus are important for larval survival and faster development rates. Higher levels of potassium were important for increased egg cluster production. The plant tissue analysis showed that the percentage of nitrogen in the experimental trees reflected the range of trees in the field and also that there is high variability within trees in the field. Our research indicates that if beetles are released on trees with poor nutrient quality, the larvae will not survive.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom