Constitutive and Induced Differential Accumulation of Amino Acid in Leaves of Susceptible and Resistant Soybean Plants in Response to the Soybean Aphid (Hemiptera: Aphididae)
Author(s) -
Mariana V. Chiozza,
Matthew E. O’Neal,
Gustavo C. MacIntosh
Publication year - 2010
Publication title -
environmental entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.749
H-Index - 89
eISSN - 1938-2936
pISSN - 0046-225X
DOI - 10.1603/en09338
Subject(s) - biology , soybean aphid , aphid , aphididae , amino acid , hemiptera , pest analysis , botany , infestation , host (biology) , agronomy , homoptera , biochemistry , genetics
Although soybean aphid (Aphis glycines) resistance is commercially available in the form of the Rag1 gene, the mechanism of this resistance is not fully understood. Amino acids are a limiting factor for aphid growth, and there is evidence that plant amino acid composition is related to aphid resistance. Antibiotic resistance like that conferred by Rag1 could be associated in part with both protein and nonprotein free amino acids reducing survival, growth, and fecundity of the target pest. We posed two hypotheses: (1) A. glycines resistance is related to host quality in terms of free amino acids composition in the leaf, and (2) aphids may enhance host quality by inducing changes in the free amino acids composition. To test these hypotheses we conducted a field experiment using a split plot design, with soybean lines (a susceptible line and a related line carrying Rag1) as whole plots and aphid density as subplots (insecticide treated or left exposed to natural infestations). We analyzed free amino acids in leaves at three soybean developmental stages in all subplots. We observed significant whole and subplot effects on the concentration of a subset of amino acids tested. Susceptible and resistant plants had constitutive (whole-plot) differences in amino acids composition in all developmental stages analyzed. In addition, aphid-induced (subplot) responses of the plant to aphid infestation were found. We propose that the reduced nutritional quality of the resistant line and its reduced susceptibility to aphid-induced changes may contribute to aphid resistance conferred by Rag1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom