z-logo
open-access-imgOpen Access
Interactions Among Bt Maize, Entomopathogens, and Rootworm Species (Coleoptera: Chrysomelidae) in the Field: Effects on Survival, Yield, and Root Injury
Author(s) -
Jennifer L. Petzold-Maxwell,
Stefan T. Jaronski,
Eric H. Clifton,
Mike W. Dunbar,
Mark A. Jackson,
Aaron J. Gassmann
Publication year - 2013
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1603/ec12375
Subject(s) - western corn rootworm , biology , heterorhabditis bacteriophora , agronomy , pest analysis , botany , zea mays
A 2 yr field study was conducted to determine how a blend of entomopathogens interacted with Bt maize to affect mortality of Diabrotica spp. (Coleoptera: Chrysomelidae), root injury to maize (Zea maize L.) and yield. The blend of entomopathogens included two entomopathogenic nematodes, Steinernema carpocapsae Weiser and Heterorhabditis bacteriophora Poinar, and one entomopathogenic fungus, Metarhizium brunneum (Metschnikoff) Sorokin. Bt maize (event DAS59122-7, which produces Bt toxin Cry34/35Ab1) decreased root injury and survival of western corn rootworm (Diabrotica virgifera virgifera LeConte) and northern corn rootworm (Diabrotica barberi Smith & Lawrence) but did not affect yield. During year 1 of the study, when rootworm abundance was high, entomopathogens in combination with Bt maize led to a significant reduction in root injury. In year 2 of the study, when rootworm abundance was lower, entomopathogens significantly decreased injury to non-Bt maize roots, but had no effect on Bt maize roots. Yield was significantly increased by the addition of entomopathogens to the soil. Entomopathogens did not decrease survival of corn rootworm species. The results suggest that soil-borne entomopathogens can complement Bt maize by protecting roots from feeding injury from corn rootworm when pest abundance is high, and can decrease root injury to non-Bt maize when rootworm abundance is low. In addition, this study also showed that the addition of entomopathogens to soil contributed to an overall increase in yield.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom