z-logo
open-access-imgOpen Access
Detection and Relative Titer ofCandidatusLiberibacter asiaticus in the Salivary Glands and Alimentary Canal ofDiaphorina citri(Hemiptera: Psyllidae) Vector of Citrus Huanglongbing Disease
Author(s) -
ElDesouky Ammar,
Robert G. Shatters,
Christine A. Lynch,
David G. Hall
Publication year - 2011
Publication title -
annals of the entomological society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.671
H-Index - 72
eISSN - 1938-2901
pISSN - 0013-8746
DOI - 10.1603/an10134
Subject(s) - diaphorina citri , biology , hemiptera , vector (molecular biology) , midgut , insect , salivary gland , nymph , virology , botany , veterinary medicine , larva , genetics , gene , medicine , biochemistry , recombinant dna
Candidatus Liberibacter asiaticus (CLas) bacterium has been strongly implicated as the causative agent of huanglongbing (HLB), or citrus greening, which is currently the most devastating citrus disease worldwide. HLB is transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in a persistent manner. We used quantitative-polymerase chain reaction (PCR) to detect CLas in dissected organs of individual D. citri adults infected with HLB in the laboratory or collected from field-infected citrus trees in South Florida. The proportion of infected (CLas-positive) dissected organs was 47–70% for the salivary glands, 72–80% for the alimentary canal, and 79–97.5% for the rest of the insect body. Statistical analysis indicated that, in both field- and laboratory-infected D. citri, the proportion of infected salivary glands was significantly lower than that of other parts in the insect body. With field-collected psyllids, the relative copy number of CLas genomes, compared with psyllid genomic DNA in each sample, was significantly higher in both the salivary gland and alimentary canal compared with that in the rest of the insect body for both males and females. These results provide the first PCR confirmation of CLas in the alimentary canal and salivary glands of D. citri and strongly suggest that the salivary glands constitute an important transmission barrier to CLas in the psyllid vector. Our results also suggest that CLas may replicate or accumulate in both the alimentary canal and salivary glands of D. citri.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom